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1 Introduction

The decay of branes via tachyon condensation is one of the few tractable string theory

systems with true nontrivial, nonperturbative dynamical evolution. The process by which

branes decay or annihilate is of fundamental relevancy and reveals important connections

between open and closed string sectors. While much recent progress has been made in

understanding open string tachyon physics, the system is still not well understood and

many open questions remain.

In particular, the annihilation of parallel D-branes and D-branes is sufficiently simple

to allow both a limited worldsheet analysis [1] as well as an effective description in terms

of a single homogeneous tachyon field [2, 3]. The inhomogeneous case, however, is both

more interesting and more complicated. For example, chiral symmetry breaking in the

Sakai-Sugimoto model is an example of a physically relevant localized tachyon decay [4, 5].

Much of the effort so far has been limited to studying time-independent inhomogeneous

soliton solutions and marginal deformations [6] rather than on the dynamical evolution.

Perhaps the simplest inhomogeneous system with a localized tachyon is where two

D-branes intersect at an angle θ. The tachyonic mode is localized at the intersection, and

as it condenses, the two branes reconnect. This recombination process plays a central

role in realizing the Higgs mechanism in Standard Model on intersecting D-branes [7] and

cosmological models of brane inflation [8]. In addition, this type of localized condensation
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may serve as a toy model for the reconnection transition found, for example, in the Sakai-

Sugimoto model, in non-trivial curved backgrounds.

For any nonzero value of the angle θ, as mentioned above, the open strings stretching

between the branes have tachyonic modes in the low-lying mass spectrum. As is well-

known from worldsheet calculations, the negative mass squared of the tachyon in the NS

(Neveu-Schwarz) sector increase linearly with |θ| [9]. It is important to notice that when

the angle θ becomes large, these are no longer the lowest mass excited states of the system.

In particular, when the intersection angle θ passes through π
2 (perpendicular branes) a new

tower of states becomes increasingly light and constitute the low-lying mass spectrum of

the system [9–17]. Indeed, for the most extreme case θ ≃ π, it is more natural to view the

system as a D-brane and a D-brane intersecting at an angle ϕ ≡ π − θ.

Ideally, one would like to study the intersecting D-D system directly on the worldsheet

by calculating the string scattering amplitudes in the rolling tachyon background [2, 18].

However, this requires turning on both the inhomogeneous tachyon deformation and a

transverse scalar at the same time, a task which is currently out of reach (see [1, 19, 20]

for work toward this direction in different set-ups). We therefore resort to describing the

inhomogeneous tachyon condensation from an effective field theory point of view.

For economic reasons we will consider here intersecting D1-branes. The generalization

to other Dp-branes and multiple angles is straightforward.

In both flat and curved space, there are known constructions for coincident D-

D effective actions [3, 6] and the consequent work on understanding their homogeneous

decay [21]. However, when D-branes are even slightly off from being parallel to each other,

little is known about their decay process in real time. This is mostly because initially the

branes meet at an angle at a single point in spacetime making the tachyon condensation

process highly inhomogeneous.

To derive an effective action for a D1-D1 system, we will start from a known action

for a coincident D2-D2-brane pair with appropriate gauge fields and tachyons turned on.

Then, after T-duality, we will be led to an action describing a D1-D1-brane pair which

is initially intersecting at an angle ϕ in flat spacetime background. An analysis of the

spectrum of small fluctuations around the false vacuum will give a tachyon mass which, by

construction, is exact for small ϕ.

Our main objective is to solve for the explicit temporal evolution, one which we will

have to approach numerically. The inhomogeneous decay is described by two coupled two-

dimensional fields whose equations of motion are not amenable to analytic methods. While

we can not entirely trust the quantitative results, because we are solving an effective theory

and in addition doing so only approximately, our solutions will hopefully correctly capture

the qualitative features of the decay.

The branes decay in roughly two steps. First, starting from the intersection point, the

separated D1 and D1 are attracted to each other in a manner that resembles being zipped

together with the zipper traveling asymptotically at the speed of light. Once the branes

are parallel, the tachyon begins to roll with constant velocity toward its vacuum, and, just

as in the homogenous case, the dynamics of the branes can then be described in terms of

a pressureless, non-interacting tachyon matter.
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Our results qualitatively match the expected evolution of straight intersecting branes

reconnecting into curved separating branes, as has been seen in previous analyses in terms of

D1 pairs [15, 17], except that in this D1-D1 description the separating branes are connected

by a parallel D1-D1 pair with a rolling tachyon. We will argue, using a slightly modified

example, that from the open string point of view, this parallel D1-D1 pair is equivalent to

the vacuum, and so that the final states of the D1-D1 and D1-D1 systems in fact differ

only by a change of variables.

This paper is organized as follows. In section 2 we will review previous work on tachyon

condensation in intersecting D-brane systems, and in section 3 we will turn to deriving an

effective action for D1-D1-branes. In addition, we will compute the false vacuum modes

and the tachyon mass. Section 4 contains some steps necessary for numerical evaluation

of the dynamics including a Legendre transformation to the Hamiltonian formalism and a

discussion of the boundary conditions. In section 5 we will present and describe the results

of the numerical computations. We will then explain in section 6 the relationship between

describing the decay as that of two D-branes rather than as a D-D pair. Finally, section 7

comprises our summary and ideas for possible extensions of this work.

2 Review of previous analysis

Let us first recall some basic facts from the worldsheet. For simplicity, let us start with two

parallel D1-branes in Type IIB superstring theory. Then consider dialing the intersection

angle θ to some finite value. The open strings which connect the different D1-branes will

then get confined about the intersection point because the tensions of the strings tend to

minimize. By analyzing the NS sector of the energy spectrum of these localized strings one

finds that the mass squared of the modes behaves linearly with the angle [9],

m2
WS =

(

N − 1

2

) |θ|
πα′ , N = 0, 1, 2, . . . . (2.1)

In the rest of the paper we shall only focus on positive angles, θ > 0 and ϕ = π − θ > 0,

and will henceforth drop the absolute value symbols. We will be interested in the lowest,

tachyonic excitation N = 0. Notice that the tachyonic mode exists at all (nonzero) angles

θ and thus signals the instability of the configuration.

The part of the spectrum in (2.1) is reproduced to order O(θ) by the spectrum of

fluctuations around the intersecting D1-D1-brane pair background in a non-Abelian Yang-

Mills (YM) theory [15, 17]. An intrinsic feature of the effective field theory approach is

that the mass of the lowest mode behaves as

m2 = −tan
(

θ
2

)

πα′ , (2.2)

rather than linearly as in (2.1). From (2.2) it is evident that the spectra only match at

small angles, but the situation becomes increasingly worse at larger angles. This reflects

the fact that the YM description is only viable for small angles. The negative mass squared

of the tachyon means that the eigenfunction blows up exponentially in time [15, 17],

T ∼ e−i
√

m2te−
tan( θ

2)
πα′

x2

. (2.3)

– 3 –



J
H
E
P
0
8
(
2
0
0
9
)
0
2
4

From (2.3) we also see that the tachyon fluctuation modes are localized around the

intersection point x = 0, agreeing with the worldsheet. In [15] it was further argued,

that the geometric realization of the tachyon condensation is a D-brane recombination

process. This was explicitly shown by diagonalizing the fluctuations through a local gauge

transformation of the brane-coordinates. Here, however, we shall postpone discussing this

phenomenon to section 6.

One can also use the spectrum (2.1) to check the α′2F 4 and higher order α′ corrections

in the expansion of the non-Abelian Dirac-Born-Infeld (DBI) action and find agreement [11,

16, 17]. However, equipped even with the full DBI action, thus far one has not been able

to reproduce the mass spectrum (2.1) exactly.1

In the current paper, we are mostly interested in the behavior near θ ≃ π. Given the

shortcomings of matching with the mass spectrum (2.1) it is better to look for alternative

routes. If one dials the intersection angle all the way to θ → π, one finally arrives to a paral-

lel D1-D1 configuration, which has been investigated in numerous articles. We will therefore

find it promising to begin with a well-motivated tachyon DBI action for a D1-D1-brane pair,

which, by construction, will be valid at small angles ϕ = π−θ ≈ 0, in contrast to the usual

effective action for the D1-D1-brane pair. Derivation of the D1-D1 action shall follow below.

3 Derivation of the D1-D1 action

We begin by deriving the effective action for the intersecting D1-D1 system. This can

be acquired from the action for a coincident D2-D2-brane pair with equal and opposite

magnetic fields. We then perform a T-duality along one of the directions longitudinal to

the D2 and D2 which yields the desired D1-D1 action.

The action for a pair of coincident D2-D2 is the usual tachyon DBI type action [6],

SD2 = −µ2

∫

d3x V (|τ |)
(

e−φ(1)

√

− det
(

A(1)
ab

)

+ (1 ↔ 2)

)

, (3.1)

where

A(i)
ab = ηab + ∂aZ

(i)∂bZ
(i) + 2πα′F

(i)
ab +

2πα′

2
(Daτ(Dbτ)∗ + (Daτ)∗Dbτ) (3.2)

F
(i)
ab = ∂aA

(i)
b − ∂bA

(i)
a (3.3)

Daτ = ∂aτ − i(A(1)
a − A(2)

a )τ . (3.4)

By choosing to work in unitary gauge, we can set Im τ = 0 and will denote Re τ = T .

With a view towards an upcoming T-duality in the y-direction, let us choose an ansatz

where T and Ay depend on t and x but not y. We further set A
(1)
y = −A

(2)
y ≡ A. In

addition, we fix the dilaton to be constant eφ(i)
= gs and set the other scalars Z(i) and the

1In [11] it was attempted to fix the discrepancy by considering a symmetric trace prescription of [22]

in the non-Abelian DBI action. Though this procedure did fix the behavior for the lowest excitation, the

spacing of the mass spectrum turned out to be incorrect.
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other components of the gauge field to zero. The dynamical variables are then:

Fty = ∂tAy = Ȧ (3.5)

Fxy = ∂xAy = A′ (3.6)

DtT = ∂0T = Ṫ (3.7)

DxT = ∂xT = T ′ (3.8)

DyT = −2iAT (3.9)

With this ansatz, D2 and D2 actions are identical and combine into

SD2 = −2
µ2

gs

∫

d3x V (T )
√

− det (ηab + 2πα′Fab + 2πα′DaTDbT ) . (3.10)

Evaluating the determinant and integrating over the circle in the y-direction of radius R

yields

SD2 = −2(2πR)
µ2

gs

∫

d2xV (T )

(

(

1 + 2πα′
(

−Ṫ 2 + T ′2
))

(

1 + 8πα′A2T 2
)

+(2πα′)2
(

−Ȧ2+A′2
)

−(2πα′)3
(

ȦT ′−A′Ṫ
)2
)

1
2

. (3.11)

We now T-dualize in y to find the action for intersecting D1-D1. Under the T-duality,

R → α′

R , gs →
√

α′

R gs, and Ay → 1
2πα′ y. This yields the action:

SD1 = −2
µ1

gs

∫

d2x V (T ) (3.12)

×
√

(

1 − 2πα′Ṫ 2 + 2πα′T ′2
)

(

1 +
4T 2y2

2πα′

)

− ẏ2 + y′2 − 2πα′(y′Ṫ − ẏT ′)2 ,

where µ1 = 2π
√

α′µ2. The scalar y represents half the distance between the D1 and D1,

so the initial angle between the branes is then given by

tan ϕ/2 =
y

x
. (3.13)

We can rescale the coordinates t and x and the field y by (t, x, y) →
√

2πα′(t, x, y), so we

have an action in terms of dimensionless quantities:

SD1 = −N
∫

d2x V (T )

√

(

1 − Ṫ 2 + T ′2
)

(1 + 4T 2y2) − ẏ2 + y′2 − (y′Ṫ − ẏT ′)2 , (3.14)

where we define the normalization N = 2(2πα′)µ1

gs
= 2

gs
. Motivated by [23], we take the

tachyon potential to be

V (T ) =
1

cosh(βT )
, (3.15)

where β =
√

π for superstrings. The vacua for this potential are at T = ±∞, which implies

that to reach them would require an infinite amount of time.

– 5 –
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3.1 EM tensor for tachyon matter

For later purposes let us record the energy-momentum tensor for the action (3.14). Let us

generalize the above action (3.14) to curved space as follows

Scurved = −N
∫

dtdx
√−g V (T )

(

1 + gab(∂ay∂by + ∂aT∂bT )

+4T 2y2(1+gab∂aT∂bT )+(gabgcd−gacgbd)∂ay∂by∂cT∂dT

)
1
2

.(3.16)

The energy-momentum tensor is then extracted as

Tab = − 2√−g

δScurved

δgab

∣

∣

∣

g=η
(3.17)

= ηabL +
NV (T )

√

(

1 − Ṫ 2 + T ′2
)

(1 + 4T 2y2) − ẏ2 + y′2 − (y′Ṫ − ẏT ′)2

×
(

∂ay∂by + ∂aT∂bT + 4T 2y2∂aT∂bT + ∂ay∂by(∂T )2

+∂aT∂bT (∂y)2 − ∂(ay∂b)T∂y · ∂T
)

. (3.18)

Explicitly,

T00 = NV (T )
1 + y′2 + T ′2 + 4T 2y2(1 + T ′2)

√

(

1 − Ṫ 2 + T ′2
)

(1 + 4T 2y2) − ẏ2 + y′2 − (y′Ṫ − ẏT ′)2
(3.19)

T01 = NV (T )
ẏy′ + ṪT ′ + 4T 2y2ṪT ′

√

(

1 − Ṫ 2 + T ′2
)

(1 + 4T 2y2) − ẏ2 + y′2 − (y′Ṫ − ẏT ′)2
(3.20)

T11 = NV (T )
−1 + ẏ2 + Ṫ 2 − 4T 2y2(1 − T 2)

√

(

1 − Ṫ 2 + T ′2
)

(1 + 4T 2y2) − ẏ2 + y′2 − (y′Ṫ − ẏT ′)2
. (3.21)

3.2 Mode analysis

As in the previous studies of D-D systems [15, 17], we can analyze the spectrum of fluc-

tuations of the action (3.14) around the initial state to identify the tachyonic mode. We

begin at the maximum of the tachyon potential T = 0 and will also allow for the pos-

sibility of small x-dependent corrections to the relative position of the D1 and D1, so

y(x) = x tan(ϕ/2) + δy(x), where δy ≪ 1. The action (3.14) expanded to second order in

T and δy is then

S ∼ N
∫

dx

(

− Ṫ 2

2
+

T ′2

2
+

1

2

(

4x2 tan(ϕ/2)2 − β2(1 + tan(ϕ/2)2)
)

T 2

+ tan(ϕ/2)δy − (δ̇y)2 + (δy)2

)

. (3.22)
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The position fluctuations δy are free and decouple, so at this order the position of the

branes is uncorrected.

The equation of motion for the tachyon is

− T̈ + T ′′ =
(

4x2 tan(ϕ/2)2 − β2(1 + tan(ϕ/2)2)
)

T . (3.23)

Now, decompose T into modes of definite frequency Ωn as

T (t, x) =

∞
∑

n=0

Cne−iΩntTn(x) . (3.24)

Normalizability of the modes implies a discrete spectrum, and therefore n is a nonnegative

integer. The equation for the tachyon (3.23) now becomes just the Schrödinger equation

for a harmonic oscillator with mass m and frequency ω, where mω = 2 tan(ϕ/2) and

2mEn = β2(1 + tan(ϕ/2)2) + Ω2
n. Imposing the boundary condition Tn(∞) = 0, the

solution for the modes is therefore

Tn(x) = Hn

(

x
√

2 tan(ϕ/2)
)

e−x2 tan(ϕ/2) , (3.25)

where Hn is the Hermite polynomial of order n. These modes are localized, as expected,

near the intersection point at x = 0.

The frequencies are given by

Ω2
n = 4 tan(ϕ/2)

(

n +
1

2

)

− β2
(

1 + tan(ϕ/2)2
)

. (3.26)

Focusing on the lowest mode n = 0 and plugging in β2 = π, we see that Ω2
0 < 0 for all

values of ϕ, giving an exponentially-growing tachyonic mode. For small ϕ,

Ω2
0 ≈ ϕ − π (3.27)

which matches with the worldsheet calculation (2.1) of the tachyon mass.2 However, as

with the D-D calculations in [15, 17], for larger angles the mass computed via the effective

action increasingly deviates from the exact result.

4 Set-up

Having arrived at the effective action (3.14), we now need to derive the Hamiltonian equa-

tions of motion. In addition, we will also discuss the appropriate boundary conditions,

particularly the modifications required for implementing numerical computations.

4.1 Hamiltonian formalism

We will perform a Legendre transformation on the action (3.14) and work in the Hamil-

tonian formalism [24–26]. Of course, the Lagrange equations of motion derived from the

2Recall that we are measuring dimensionful quantities in units of 2πα′.

– 7 –
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action (3.14) are in principle equivalent, but for implementing a numerical solution, solv-

ing four coupled first-order differential equations was found to be easier than two coupled

second-order differential equations. In addition, using the Hamiltonian framework facili-

tates a description of the tachyon vacuum, V (T = ±∞) = 0.

The canonical momenta are given by

ΠT =
∂L
∂Ṫ

=
NV (T )

{

Ṫ
(

1 + 4y2T 2
)

+ y′
(

ẏT ′ − y′Ṫ
)}

√

(

1 − Ṫ 2 + T ′2
)

(1 + 4T 2y2) − ẏ2 + y′2 − (y′Ṫ − ẏT ′)2
(4.1)

Πy =
∂L
∂ẏ

=
NV (T )

{

ẏ + T ′
(

ẏT ′ − y′Ṫ
)}

√

(

1 − Ṫ 2 + T ′2
)

(1 + 4T 2y2) − ẏ2 + y′2 − (y′Ṫ − ẏT ′)2
. (4.2)

The Hamiltonian density is then

H = ΠT Ṫ + Πy ẏ − L (4.3)

=

(

Π2
T (1 + T ′2) + Π2

y

(

1 + 4y2T 2 + y′
2
)

+ 2y′T ′ΠyΠT

+N 2V (T )2
(

y′
2
+ (1 + T ′2)(1 + 4y2T 2)

)

)
1
2

(4.4)

from which we derive the equations of motion:

Ṫ =
ΠT

(

1 + T ′2)+ y′T ′Πy

H (4.5)

Π̇T =
−4Π2

yy
2T −N 2V (T )2

{

4
(

1 + T ′2) y2T + V ′

V

(

y′2 +
(

1 + T ′2) (1 + 4T 2y2
))

}

H

+∂x

(

Π2
T T ′ + y′ΠT Πy + N 2V (T )2T ′ (1 + 4T 2y2

)

H

)

(4.6)

ẏ =
Πy

(

1 + 4y2T 2 + y′2
)

+ y′T ′ΠT

H (4.7)

Π̇y =
−4Π2

T T 2y − 4N 2V (T )2
(

1 + T ′2)T 2y

H

+∂x

(

Π2
yy

′ + T ′ΠT Πy + N 2V (T )2y′

H

)

. (4.8)

4.2 Boundary conditions

For describing the dynamical evolution, we begin at t = 0 with a straight, static D1 and

D1 intersecting at an angle ϕ. This translates to y(0, x) = x tan(ϕ/2) and ẏ(0, x) = 0. In

order to initiate the tachyon rolling, we start it at rest, Ṫ (0, x) = 0, but slightly displaced

from the maximum at T = 0 near x = 0. We do not consider a homogenous tachyon,

both because the decay is localized near the intersection and, more importantly, as we will

– 8 –
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describe, for performing the numerical calculations the tachyon must be zero at the spatial

cutoff xmax. The initial tachyon profile

T (0, x) = Tǫ

(

e−x2 − e−x2
max

)

(4.9)

is somewhat arbitrary, but we have checked that the subsequent evolution is largely in-

sensitive to its shape. At the level of small perturbations at least, we can decompose the

initial profile into modes, and while the tachyon mode grows exponentially, the massive

modes will just oscillate, contributing some small wiggles. Changing the overall constant

Tǫ simply adjusts the timescale of the decay, as we will discuss in the next section.

Since we will be solving the Hamiltonian equations of motion, we need to translate our

initial conditions for Ṫ and ẏ into conditions for ΠT and Πy. From (4.1) and (4.2) we find

that ΠT (t = 0, x) = 0 and Πy(t = 0, x) = 0.

In addition to initial conditions, we need to impose conditions at the spatial boundaries.

Ideally, we would like to require that at spatial infinities the system is in the false vacuum

for all times. However, for numerical calculations, we employ a finite spatial cutoff, x ∈
[−xmax, xmax]. At these boundaries we need to fix the fields, and they must satisfy the

equations of motion there. We therefore fix the finite boundary to be in the false vacuum,

i.e., T (t,±xmax) = 0 and y(t,±xmax) = ±xmax tan(ϕ/2). Of course, we must be sure

to choose xmax large enough that the spatial cutoff does not affect the dynamics. Since

boundary contributions can only propagate at the speed of light, the region outside the

future lightcone of the boundary should be insensitive to the cutoff. We will be focussed

on the relevant physics near the intersection point, so if we consider only times t < xmax

we will be free of spurious boundary effects. As a check, we have varied xmax and shown

that for sufficiently large values, our results are independent of the choice.

5 Analysis

We solve the Hamiltonian equations (4.5), (4.6), (4.7), and (4.8) using Mathematica. For

the results presented below, we choose the following representative parameters:

N = 1 (5.1)

ϕ =
π

12
(5.2)

xmax = 30 (5.3)

Tǫ = 10−3 . (5.4)

We find that the numerical integration is only trustworthy up to some value of t. After

this point numerical errors begin to grow large; for example, the stress tensor is no longer

even approximately conserved. For these parameters, we found that the numerics broke

down around t > 10.

The solution for the tachyon as a function of t and x is shown in figure 1. Initially,

the system remains close to the false vacuum. But then, near x = 0, the tachyon begins to

grow, and the region of condensation spreads outward roughly at the speed of light. The

corresponding evolution of y is shown in figure 2. For clarity, because y is antisymmetric,

– 9 –
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Figure 1. The tachyon as a function of t and x.

Figure 2. y as a function of t and x.

y(t, x) = −y(t,−x), we only plot positive values of x. Initially, the system again stays near

the false vacuum and the branes are straight. Once the decay process begins, for x . t the

branes are coincident with some small oscillations around y = 0.

We can more easily illustrate certain features of the evolution by considering

cross-sections of figures 1 and 2. In figure 3 we plot T (t, 0). There are three clearly

distinguishable parts of the curve; at early time, for t . 3, the system remains close to the

false vacuum T ≈ 0, then there is a brief transitional region where T begins to condense,

rolling down the potential, and then for t & 4, the tachyon rolls at a constant velocity

Ṫ ≈ 1 toward the vacuum at T = ∞.

In addition, we plot in figure 4 the profile of y(x) for various fixed times, again only for

x > 0. For t = 4, the branes are just beginning to pull toward each other. At later times,

the profile assumes a waterfall shape, again with three regions. Far from the intersection

the branes retain their initial configuration. But, at around x ≈ t, a point is reached where

y → 0 rapidly, and then, in an increasingly large region around x = 0, the branes have
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Figure 3. The tachyon at x = 0 as a function of t.

Figure 4. y as a function of x, for t = 2 (black), 4 (dotted red), 6 (dot-dashed blue), and 8 (dashed

green).

Figure 5. The position of the positive-velocity zipper z as a function of t.

become coincident except for some small fluctuations. The process resembles the action of

two zippers moving away from the intersection point, zipping the branes together.

We will define z(t) to be the position of the right-moving zipper and by symmetry the

left-moving zipper is at −z(t). More specifically, for a given time, z equals the largest zero

of y(x). Figure 5 presents a graph of z(t). For t . 4, z = 0 while at late time ż ≈ 1 with a

sharp transition in between.
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Figure 6. The energy density T00 as a function of t and x. Notice the large spikes corresponding

along the worldlines of the zippers.

Figure 7. The momentum density T01 as a function of t and x. The upward spike corresponds to

the worldline of the zipper with negative velocity while the trough corresponds to the zipper with

positive velocity.

We can further illustrate the physical properties of the evolution with plots of the com-

ponents of the stress tensor. Figure 6 shows the energy density T00. We have normalized the

false vacuum energy so that T00 = 1. The motion of the zippers matches roughly with the

large spikes in the energy density due to the large kinetic and gradient energy as the branes

come together very rapidly. The position of the zippers is also clearly visible in figure 7

which plots the momentum density T01; the zipper moving to the left is represented by the

spike and the one going to the right by the trough. The pressure T11 is shown in figure 8.

The false vacuum has negative pressure, and again there are spikes corresponding to the

worldlines of the zippers. Once the tachyon has begun to condense, T11 → 0. In addition,

we checked numerically that Tµν was conserved to very good accuracy by the evolution.

We will first focus on the transitional region between the false vacuum and the rolling

– 12 –
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Figure 8. The pressure T11 as a function of t and x. Note that the pressure vanishes in the

condensing region.

region, where the decay first begins. We can identify three processes which characterize

this region, and we can see that they are all related. Intuitively, the tachyon is massive

where the branes are separated by more than the string length, so it cannot really begin

rolling until the branes have been zipped together. However, it is the displacement of the

tachyon from zero which gives a potential to y and pulls the branes together. Consequently,

both of these processes must occur together. The timescale for the onset of the decay is

controlled by the initial displacement parameter Tǫ; the smaller Tǫ is, the longer it takes

for the decay to begin. For our choice of Tǫ = 10−3, the tachyon starts rolling near the

intersection at around t ∼ 3. At later times T (t, x) starts to grow when t ∼ x. Similarly,

the zipper begins moving at t ∼ 4. As the zipper’s velocity approaches the speed of light,

a given position on the brane begins to deviate from the false vacuum at around t ∼ x.

The late time behavior, once the zipper has passed, very much resembles the decay

of parallel D1-D1-branes but is inhomogeneous. We actually do not find that y = 0 past

the zipper but rather that y overshoots and oscillates around zero. As T increases, the

masses of these oscillations grow, so their frequencies and amplitudes diminish. However,

we should not really trust our effective action to describe features such as these wiggles

which are small compared with the string length.

In the approximation that at late times y = 0, the dynamics becomes that of parallel

branes, with the action for the tachyon becoming just

SD1 = −N
∫

d2x V (T )
√

1 − Ṫ 2 + T ′2 . (5.5)

At late time, T is sufficiently large that we may neglect V (T ). The Hamiltonian

becomes just

H =
√

Π2
T (1 + T ′2) , (5.6)

and the equations of motion (4.5) and (4.6) reduce to

Ṫ =
√

1 + T ′2 (5.7)
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Figure 9. To determine the extent to which the late-time tachyon obeys (5.7), we plot (5.11) as

a function of x at fixed t = 6. This function approximately vanishes in the zipped region, showing

that the dust description is valid.

Π̇T = ∂x

(

ΠT T ′
√

1 + T ′2

)

. (5.8)

This is the well-studied pressureless tachyon dust [24–28] (see also [29]) where the velocity

of the dust is given by

vµ = −∂µT (5.9)

and the local rest energy density is

ǫ =
ΠT

√

1 + T ′2
. (5.10)

We find that the numerical solution accurately reproduces the tachyon dust once the

branes have been zipped together. At x = 0 where T ′ = 0, we saw in figure 3 that Ṫ → 1

in agreement with (5.7). More generally, we plot in figure 9 the function

1 − Ṫ 2 + T ′2

1 + Ṫ 2 + T ′2
(5.11)

which provides a normalized measure of the degree to which (5.7) is satisfied numerically.

To good accuracy, (5.11) is zero in the condensing region around x = 0, implying that in

fact (5.7) is approximately obeyed. Furthermore, we see from figure 8 that the condensing

region behind the zipper is almost exactly pressureless.

If this zipped region is essentially a parallel D1-D1, we arrive at the following inter-

pretation for the final configuration of the system. At late times there are two curved

D1-branes separating from each other and straightening but connected to each other by

the parallel D1-D1. Based on the results from the D-D description, the two separating

D1-branes is expected. However, rather than being devoid of branes, the region between

them contains this decaying D1-D1 pair. In the next section we will discuss the relation

between these two descriptions.
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time
increases

fuzz

time
decreases

U singular

U smooth

Figure 10. The process of D-D decay and recombination is shown in two gauges. On the left,

the intersection of two straight branes develops off-diagonal elements and becomes fuzzy. After a

gauge transformation U , the branes have reconnected and are pulling apart. However, because U

is singular at the beginning of the decay, the initial conditions are inequivalent.

6 Relationship between D-D and D-D systems

We have been analyzing the system of intersecting D1-branes using a description in terms

of a D-D pair. This choice of variables, at the level of an exact worldsheet description,

amounts to an arbitrary gauge choice; a D1 is simply a D1 with opposite orientation, and

a pair of D1-branes intersecting with an angle θ is equivalent to a D1 crossing a D1 at

an angle ϕ = π − θ. However, the two effective field theory descriptions of these systems

are inequivalent; each integrates out a different set of massive modes, resulting in different

tachyonic and low-mass modes remaining. For example, using the YM approximation to

the non-abelian DBI for the D-D pair, the tachyon’s mass (2.2) matches the worldsheet

value (2.1) only for θ ∼ 0, while in the tachyon DBI description of the D-D system, the

tachyon’s mass (3.27) matches for θ ∼ π.

Even though the two effective descriptions are not identical and the results need not to

match a priori, as we will argue, they actually do produce dynamics which are the same, at

least qualitatively. However, because the change of variables relating the two descriptions

is nontrivially complicated, seeing that the results are physically similar can be a bit subtle.

Before considering the relation between the D-D and D-D systems, we will begin with a

simple illustrative example, a case where the two effective descriptions are in fact exactly

equivalent and the change of variables between them is explicit.

In the intersecting D-D system, how one describes the decay process depends on one’s

choice of gauge. In addition to choosing brane or anti-brane labels, the way the ends of

the branes are connected is also to some degree gauge-dependent. The multiple equivalent

descriptions can be easily seen from the non-abelian YM analysis of a D1-D1 decay [15],

as illustrated in figure 10.
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In the initial variables, the matrix y giving the brane position is diagonal, corresponding

to two straight D1-branes. But, as the decay proceeds, off-diagonal elements begin to

grow, fuzzing out the intersection point. However, y can be rediagonalized by a gauge

transformation U which exchanges the brane ends [15, 17]. In the new variables, the

branes are disconnected, curved, and separating with time. Evolving back in time to the

beginning of the decay, these two bent branes touch at a point. This odd configuration is,

of course, physically inequivalent to the initial straight branes, because at t = 0 the gauge

transformation U relating them is singular.

The important feature, which also appears in the D-D picture, is that in the origi-

nal variables the decaying branes are not seen to annihilate at the intersection point, and

the ends remain connected as in the initial state. Instead, the decay region is character-

ized by an unusual, non-intuitive state such as the stringy fuzz, and only after a gauge

transformation does the system appear as two disconnected branes.

For the description in terms of an intersecting D-D pair, we showed in section 5 that

the branes do not annihilate or reconnect into a disconnected pair of D1-branes. Such an

event is, in fact, outside the range of the tachyon DBI effective theory we used. Instead,

the branes became zipped together, and where the D1 and D1 were parallel, the rolling

tachyon was identified as inhomogeneous tachyon matter. However, although we do not

have an explicit gauge transformation analogous to U in the D-D case, there is at least in

principle a change of variables such that the parallel D1-D1 are replaced by a gap between

a pair of disconnected D1-branes. Furthermore, in a more complete theory the parallel

branes with tachyon matter could be alternatively described by a gas of closed strings and

D0-branes (which themselves would decay) between the disconnected D1-branes.

Although we can not perform the explicit change of variables for the intersecting D-

D pair, we can illustrate how it works in a similar but physically distinct system. For

the initially straight intersecting D1-D1 considered in section 5, the relative position of

the branes y was always antisymmetric, y(x) = −y(−x). We can just as easily solve the

equations of motion but with y(x) = y(−x) instead, although for numerical computation we

have to smooth out the branes at x = 0 so as to avoid singular first derivatives there. This

symmetric boundary condition corresponds to two angled branes with opposite orientations

which touch at the point where they are bent. In addition, we will choose the intersection

angle to be ϕ = π/2. This system is unstable, and there are two different directions in which

it can decay corresponding to the two ways the branes can recombine, as shown in figure 11.3

One decay channel, mode (a) in figure 11, closely resembles the late-time state of

intersecting D1-branes, except that instead of ending up with two separating D1-branes, the

orientation of one of the D1-branes reversed. The numerical solution, presented in figure 12,

shows the D1 and D1 growing further apart while the tachyon field stays very close to zero.

The other decay mode corresponds to the other way of recombining the ends of the

branes and is (b) in figure 11. In the final state there is still one curved D1 and one curved

D1, but now they are connected. Numerically solving the equations of motion yields an

3For the numerical computations, which decay mode the system takes depends on how exactly the corner

at x = 0 is resolved. The details, however, are not that relevant to our discussion.
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(b)(a)

Figure 11. The decay of two angled D1-branes which touch at a point, such that y(x) is symmetric,

can proceed in two ways. Final state (a) consists of a disconnected D1 and D1. Final state (b) also

contains a separating D1 and D1, but they are connected by a parallel D1-D1.

Figure 12. y as a function of x, for t = 0 (black), 2 (dotted red), 4 (dot-dashed blue), and 6

(dashed green).

evolution qualitatively very similar to those of section 5; the branes zip together and then

the tachyon rolls towards infinity on the parallel D1-D1 pair connecting the two separating

D1- and D1-branes.

Initially, these two final states appear quite different, but in fact, they must be equiv-

alent due to the symmetry of the initial state which is invariant under the exchange of

x and y.4 This operation should map the final states into each other, and it does up to

the parallel D1-D1. However, if we also exchange the roles of x and y in the tachyon DBI

action, writing x and T functions of y, the parallel D1-D1 would be present in decay (a)

and not in mode (b).

We conclude that the two modes are, up to this exchange of directions, different de-

scriptions of the same physical state. In this example the change of variables is particularly

simple; whether a parallel D1-D1 connects the separating D1 and D1 or not depends on the

4The exchange corresponds to a π/2 rotation and an orientation reversal.
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choice of the worldvolume coordinates. At least at the level of open strings where we are

working, both the parallel D1-D1 with a rolling tachyon and empty space are equivalent.

In particular, since at late time the parallel D1-D1 with rolling tachyon does not support

open string modes, it is effectively as if there are no branes there at all.

Although the change of variables involved in the intersecting D1-D1 system is much

more complicated, the intuition gained from this symmetric example should hold. Because

they are different approximations of the same system, the non-Abelian DBI D-D effective

theory and the tachyon DBI D-D effective theory do not give identical quantitative results.

However, since we should regard the parallel D1-D1 as essentially the vacuum, both the

D-D and D-D are qualitatively the same.

7 Summary and discussion

In this paper we studied the D1-D1 configuration, initially intersecting at an angle ϕ. This

configuration is unstable because tachyonic modes are present at all angles (except for the

parallel D-D-brane pair ϕ = π). We modeled the evolution of this system by deriving

the equations of motion for the tachyon T (t, x) and the separation field y(t, x) from the

tachyon DBI action and solved them numerically.

We found that, at the very beginning of the evolution, the tachyon, which was localized

at the intersection point, slowly rolled away from the maximum point of the effective

potential. Then, after some time value, which could be interpreted as the (local) lifetime

of the brane system [30], the tachyon began to grow linearly with time and thus induced

the dynamics for the separation field y(t, x). As time passed, the branes were pulled toward

each other such that the point where they first met moved from 0 to larger ±x values. The

process resembled that of two zippers moving at opposite directions with speeds of light,

zipping the branes together, and continuing indefinitely. The region between the zippers

had the behavior of a decaying parallel D1-D1 pair, but an inhomogeneous one. At late

time, we were able to capture the essential features of the remnant by the well-studied

inhomogeneous pressureless tachyon dust.

Although the tachyon DBI is by construction accurate for θ ∼ π while the YM de-

scription is valid for θ ∼ 0, both these results in terms of a D1-D1 pair and the description

in terms of intersecting D1-branes give qualitatively the same evolution. The final state

in both pictures contains two reconnected separating D1-branes. We have argued that the

parallel D1-D1 connecting the branes in the tachyon DBI picture is an artifact of the choice

of variables and is, in fact, equivalent to the gap between the branes in the YM description.

In both of these effective theories the trace prescriptions for the actions are somewhat

ambiguous. In the case of D-D, the proposed action of [31] gives an alternative way of

performing the trace and potentially gives different results from those found here. The non-

Abelian DBI effective description of the D-D system should be valid not just at small angles.

If the correct trace prescription could be found, for example, the worldsheet formula (2.1)

for the mass at all angles may be reproduced.

Another potential extension of these results is to other systems featuring localized

tachyon condensation. One may have hoped this simple flat-space system could serve as
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a toy model for inhomogeneous brane decays in non-trivial curved backgrounds. In the

Sakai-Sugimoto model, for example, a parallel D8-D8 pair decays into a single U-shaped

D8 via the condensation of a tachyon localized at small radii [4]. However, one important

qualitative difference between this and intersecting branes is that in the flat-space case the

decay process continues without end and the condensing region does not stay localized but

instead grows without bound.
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